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Abstract-Integral equations are derived which govern transient primary and secondary creep in thin
rectangular strips subject to torsion. Formal similarity between these equations and others arising in
previous work are exploited to obtain bounds, monotonicity and convexity of the stress profile as well as
uniform approximations.

I. INTRODUCTION
In [1-4] respectively, the problems of transient creep, both primary and secondary and
including the effect of elastic strains, were studied for cylindrical and spherical pressure
vessels, beams subject to pure bending and the torsion of circular cylinders. In all cases, the
system of governing equations was reduced to a single nonlinear integral equation which,
despite the diversity of the original problems, has the same basic form. For this reason, the
same methods could be applied in all of these cases to obtain a priori bounds, the shape of stress
profiles and approximate solutions.

The present work extends this treatment to the problem of transient creep in a thin
rectangular strip undergoing torsion. The resulting integral equation takes the form (2.22) for
secondary creep and (2.26) for primary creep. The various bounds, monotonicity properties,
etc. then follow from a simple comparison of those equations with corresponding equation in
[3,4] and without the need for any further analysis. It is important to note that the bounds
herein derived for the solution U' = U'zx of (2.22) or (2.26) imply upper and lower bounds for all
the other non-zero quantities of interest, strain, displacement and specific angle of twist, at all
times and at all points in the body.

.These results would appear to be of interest in their own right, since it is in thin or slender
members that creep effects are of the most concern to designers. Furthermore, the demon­
stration of yet another physical situation to which the methods of [2-4] apply suggests the
existence of a whole class of such problems and contributes to the justification of further study
of integral equations of the form (2.22) and (2.26) and their generalizations. Although most
transient creep problems are much too complicated to be reduced to such equations, it is hoped
that these restricted results will serve to suggest or encourage the development of more widely
applicable bounding techniques. The engineering applications of such bounds have already been
described in [4], Section 4.

In Section 2, the governing equations for St.-Venant torsion are set forth, the thin strip
assumption (2.8) is applied and (2.22), (2.26) are derived. It seems to be more appropriate in the
transient creep problem to work directly with stresses rather than with a stress function, as was
done for the steady state easelS]. In Section 3, correspondences between (2.22) and 2.26) and
certain integral equations in [3-4] are exploited to obtain the monotonicity (3.3) and convexity
(3.7) of the stress profile, a priori bounds (3.S) and (3.11) and convergence of approximate
solutions under various assumptions on the creep law (l.3b).

As in previous work, the infinitesimal strains Eij are assumed to have the form

(1.1)

where Elj) and Elf) denote elastic strains and creep strains respectively. These are related to the
stresses U'ij by the equationst
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We shall also use a superposed dot to denote differentiation with respect to time. Points in three-space are desipated
either (XI, X2, Xl) or (x, y, z).
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(l.3a)

t >0. (I.3b)

Here 5ij stands for the deviatoric components of the stress, (J', is the effective stress and €/C) is
the effective creep strain. They are defined by the formulas

(1.4)

(1.5)

For m = 0, (I.3b) gives a generalized secondary creep law; for m > O. (l.3b) generalizes the
primary creep Jaw

of Odqvist and Hult[6].
The infinitesimal strain-displacement relations are given by

E,i = !(tli,i + II).;)

and the quasi-static stress equations of equilibrium by

(J'ij.j =0.

It is assumed that

E > O. - 1< v :s t m:::: O.

(1.6)

(1.7)

(1.8)

(1.9)

2. THE THIN STRIP EQUATION
We consider a rectangular strip whose cross-section (Fig. 1) lies in the x, y plane whose

sides are traction-free and whose ends are subjected to the relaxed St-Venant end conditions

J(J'u dA =J(J'zy dA =J(J'll dA =0

J(FuY dA =J(J'zzX dA =0,

J«(J'ZYx -(J'zxy)dA = M(t).

(2.1)

(2.2)

(2.3)

Following the usual procedure for small strain torsion problems, we assume that the displace­
ments IIx, lI y, liz have the formt

IIx = -a(t)zy, II). =a(t)zx, liz =a(t)t/!(x, y).

y

2h

_x

(2.4)

2b

Fig. l.

tThat the warping function '" is assumed independent of time follows the example of the treatment of the
corresponding steady-state problem [51.
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Approximate solutions for the torsion of thin strips

Eu =Eyy =EZl =Exy =0
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(2.5)

identically in the strip for all time, Due to the constitutive relations, it is consistent with (2.5) to
set

au =ayy =au =axy =O.

It then follows from (1.8) that

azx =azx (x, y, t), azy =azy (x, y, t), azx,X +azy,y =O.

The basic thin strip assumption is thatt

azy = 0 (- b < x < b, - h < y < h, t > 0).

Applying this to (2.7), we get

(2.6)

(2.7)

(2.8)

azx = azx(y, t) == a(y, t). (2.9)

If we then require a to be an odd function of y, (2.1) and (2.2) are met. In this case, we need
only consider a for 0 < y < h subject to the boundary condition

0'(0, t) = O. (2.10)

It also follows that E~) and E~) are, respectively, the only non-zero elastic and creep strains and
that

It follows from

Ezy = 0,

(2.11)

(2.12)

together with (1.7) and (2.4), that

Since, in general, a ~ 0, we must have

By (1.7), (2.4) and (2.14),

ljI = -xy +f(x).

(2.13)

(2.14)

a
Ezx = 2<-2y +f'(x» ..

Since, from the constitutive relations and (2.9), we may infer that Ezx is independent of x, it
follows that f'(x) is constant. This constant must be zero due to (2.10). Therefore,

ljI = -xy +c, Ezx =-ay. (2.15)

We are now in a position to obtain the basic creep equation. By (2.15), (1.1) and (1.2),

- ay = (1; v) a(y, t) +E~) (y, t). (2.16)

In order to eliminate a from (2.16), we first notice that (2.3) now has the form

-4b f O'(y, t)y dy = M(t). (2.17)

Thus, if we multiply both sides of (2.16) by -4by and integrate with respect to y from 0 to h,

tThis assumption, together with (2.6), assures that the ftat sides of the strip are traction-free. In return, we must relax
the boundary condition that Un .. 0 at J( .. :tb.
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we obtain the following representation for the specific angle of twist. Q:

(l+v) If" (el d f" ,
a(t): 4bEJ M(t)-I " E" (y,t)}' y, I: " y'dy,

Substituting this expression back into (2.16), we get

a(y, 1) _ _ M(1)y +II" E~r,I(~, t) E. d _ E~r,)(}', tl
E - 4bEJ I" 1+ v . ~ 1+ v .

The easiest case to consider is secondary creep, which is obtained by setting m : 0 in
(l.3b). Then,

where

(2.18)

(2.19)

(2.20)

(2.2l)

The integral equation governing secondary creep in a thin strip now becomes

u{y, t) M(t)y YII Ih II
~:; - 4bEI +[ " " G[a(e, t)] ~ d~ dT - " G[u(y, t)l dT.

Primary creep (M > 0) is governed by a system of two equations consisting of (2. I9)
together with

If either m is an even integer or f ~r,) > 0, (2.23) can be integrated to give

[I
I ]l/(m+ll

(l+vrIE~r,):; "G(u)dT ,

where

(m + 1) [3]m/2 ([ ]1/2 )
G(u) (l + v)m+1 2 F ~ lui u.

In this case, (2.19) becomes

u(y, t) _ -M(t)y YIh [II ]I/(m+l) [II ]I/(m+1)
-E- - 4bEI +[" "G(u) dT 1') d1) - "G(a) dT .

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

From now on, a will always be assumed positive on (0, c] x [0, ee).

Notice that, mathematically, (2.26) is a special case of the integral equation (2.24) of [3]
for the St.-Venant pure bending problem

u(xt) M(t)x x (C [(I ]lI(m+1) [rr ]ll<m+1)
Jt-:;-JjJ+[ Jo 10 G(a)dT kWd~- Jo G(u)dT ,

I:;rxk(x) dx,

(2.24) of [3].

(2.29) of [3]

in which a is a torsion and M is a bending moment.
In [3], it was formally shown that, for the power law (1.6), solutions u of (2.24) have the

large time representation

- M(llO)X(m+l)/1I
u(x, (0):; (C ,

Jo ~(m+l)/nkeel de

provided M tends to a limit M(oo), and M(oo) equals zero.
By comparison of (2.26) of the present paper with (2.24) of [3], we see that the thin strip
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shear stress O'(y, t) should tend to

_ M(cx::)[(m +1)/n +2]y<m+ll/.
O'(Y, 00) - - 4bh<m+ll/.+2

From this result, one readily obtains the limiting creep rate, provided that the above
assumptions on the M hold. In fact, from (2.18) and (2.24) it follows that

(I+v) (l+V)Jh[JI Jl/m+1
aCt) = 4bEI M(t) - -I- 0 0 0(0') d'T Ydy.

Thus, formally, £i(oo) =0 for primary creep, while

£i(oo) = - (I +v) Jh G[O'(y, 00)] y dy
1 "

for secondary creep. Assuming the power law (1.6), this specializes to

• 00 _ (.1) <" +11/2 K [IM(oo)l([m + I]/n +2)]" h3

a( ) - sgn M(oo) 2 [ 4bh 11.. +2 m +3'

IOS7

(2.27)

(2.28)

(2.29)

(3.2)

It is easy to check that (2.27) and (2.29) agree with the secondary creep steady-state solution
given in Section 49 of [5].

For general creep law (13b), the results of [3] imply that

O'(y,oo) =0-I(Am+1ym+l), (2.30)

where 0-1 denotes the functional inverse of 0 and A is determined by the equation

f O-I(Am+1ym+l) y dy = _~~oo). (2.31)

3. BOUNDS AND APPROXIMATE SOLUTIONS
The case of primary creep will be dealt with first. In order to exploit the results of [3] for the

pure bending problem, we restrict ourselves to positive solutions of (2.26) and assume that M is
continuously differentiable on [0,00). Also (See (2.6) of [3]),

M(O)<O,MsO (O<t<oo). (3.1)

The required constitutive assumptions are «3.3) of [3])

0(0'»0,0'(0'»0 (0<0'<00).

It then follows from (3.5) of [3] that

00' ~O (O<y sh,t ~O).
oy

(3.3)

For the main primary creep bound to hold, we must assume the power law (1.6) subject to
the restrictions

K >O,n ~ m + I.
Then (3.9) of [3] implies that

OsO'(y,t)s _h:~t) (Osysh,t~O).

(3.4)

(3.5)

As in [3], this result may be used together with (2.26) to obtain other bounds which tend to the
exact solution as t -.0.

In order to exploit previously developed secondary creep results, one must add to (3.1), (3.2)
the assumptions

m =0,0(0)= 0,0">0.

It then follows from (3.20) of [3] that

~~~ ~ 0 (0 s y s h, t > 0).

(3.6)

(3.7)
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More importantly, due to 0.6), one can apply to the thin strip problem the bounding and
approximation results of [4) pertaining to solutions s(r, t) of the integral equation

s(r,t)=~(N(t)+ ff H(s)q(Od~dr)-f H(s)dr (a:sr:sh,120), (3.8)

I = f ~Iq(~) df 0.9)

Clearly, the secondary creep thin strip eqn (2.22) constitutes that special case of (3.8) for which

M
1= 1, q(O =~, N = - 4b' H = EG, a = 0, b = h. (3. 10)

With these correspondences, we obtain from [4] a monotone nonincreasing sequence {sd
and a monotone nondecreasing sequence {ad of functions on [O,h 1x [O,x) such that, for
k = 0,1,2, ... ,

and

adY, t) :s a(y, t) :s sdY, t) (O:s Y < h, t 20)

lim CTk(Y, t) =lim sdy, t) =CT(Y, t)
k-- k--

0.1 J)

(3.12)

uniformly in any rectangle [0, h] x [0, T]. Here CT(y, t) is the solution of (2.22) and {sd, IS

defined recursively as foHows:

G-1[rG(-hM(t»)]so(r, t) = h 4bI '

fl Y(-M It Ih

) I'Sk+1 +E 0 G'(Sk)Sk+1 dT = I 4b'+ " "EG(sd ~ d~ dr + E ,,[G'(SdSk - G(sd] dr.

(3.13)

The above foHow, respectively, from (3.8) and (3.10) of [4]. To obtain the iteration scheme for
CTk, one uses (3.20) of [4J. However, instead of the definition (3.19) of a", which was derived for
the case a > 0, one sets a" = O. Notice that s I, 0'1 can be obtained in closed form.
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